나가기

AP Calculus Integration Practice

53문제

106:00
0 / 53
1 Integration · Level 3
Evaluate the integral: \(\int x^3 \sqrt{4 + x^4} d x\)
2 Integration · Level 3
Evaluate the integral: \(\int \dfrac{d x}{x \ln x}\)
3 Integration · Level 3
Evaluate the integral: \(\int \dfrac{(x + 5) d x}{\sqrt{x + 4}}\)
4 Integration · Level 4
Find the integer \(n\) that allows for integration by substitution, then evaluate: \(\int x^n \sqrt{1 - x^4} d x\)
5 Integration · Level 4
Find the integer \(n\) that allows for integration by substitution (two natural choices exist), then evaluate: \(\int \dfrac{x^n}{\sqrt{1 - x^4}} d x\)
6 Integration · Level 4
Find the integer \(n\) that allows for integration by substitution (two natural choices exist), then evaluate: \(\int \dfrac{x^n}{1 + x^10} d x\)
7 Integration · Level 4
Find the integer \(n\) that allows for integration by substitution, then evaluate: \(\int \dfrac{x^6}{1 + x^n} d x\)
8 Integration · Level 3
Find the integer \(n\) that allows for integration by substitution, then evaluate: \(\int x^n e^{-x^2} d x\)
9 Integration · Level 3
Find the integer \(n\) that allows for integration by substitution, then evaluate: \(\int x^n e^{2x^5} d x\)
10 Integration · Level 4
Find the integer \(n\) that allows for integration by substitution, then evaluate: \(\int x^5 \sqrt{1 - x^n} d x\)
11 Integration · Level 4
Find the integer \(n\) that allows for integration by substitution, then evaluate: \(\int \dfrac{x^6}{\sqrt{1 - x^n}} d x\)
12 Integration · Level 3
Find the integer \(n\) that allows for integration by substitution, then evaluate: \(\int \dfrac{d x}{x^n \ln x}\)
13 Integration · Level 3
Find the integer \(n\) that allows for integration by substitution, then evaluate: \(\int \dfrac{d x}{x^n (\ln x)^7}\)
14 Integration · Level 3
Find the integer \(n\) that allows for integration by substitution, then evaluate: \(\int x^n \sin(x^6) d x\)
15 Integration · Level 4
Find the integer \(n\) that allows for integration by substitution, then evaluate: \(\int \dfrac{\sin^n x \cos x}{\sqrt{3 + \sin^4 x}} d x\)
16 Integration · Level 4
Find the integer \(n\) that allows for integration by substitution, then evaluate: \(\int \dfrac{\sin^3 x \cos x}{\sqrt{3 + \sin^n x}} d x\)
17 Integration · Level 3
Evaluate the integral: \(\int x e^{-\dfrac{x}{10}} d x\)
18 Integration · Level 4
Evaluate the integral: \(\int x^2 e^{-\dfrac{x}{10}} d x\)
19 Integration · Level 3
Evaluate the integral: \(\int x^2 \ln x d x\)
20 Integration · Level 4
Evaluate the integral for integer \(n \neq -1\): \(\int x^n \ln x d x\)
21 Integration · Level 4
Evaluate the integral: \(\int x^2 \sin x d x\)
22 Integration · Level 4
Evaluate the integral: \(\int x^3 e^{-x^2} d x\)
23 Integration · Level 4
Evaluate the integral: \(\int x^3 \sqrt{x^2 + 1} d x\)
24 Integration · Level 5
Given that \(\int f(x) d x = g(x)\) and \(\int g(x) d x = h(x)\), compute: \(\int x^3 f(x^2) d x\)
25 Integration · Level 5
Given that \(\int f(x) d x = g(x)\) and \(\int g(x) d x = h(x)\), compute: \(\int x^{2n-1} f(x^n) d x\)
26 Integration · Level 4
Evaluate the integral: \(\int \sin^{-1} x d x\)
27 Integration · Level 5
Evaluate the integral: \(\int (\sin^{-1} x)^2 d x\)
28 Integration · Level 4
Evaluate the integral: \(\int \tan^{-1} x d x\)
29 Integration · Level 5
Evaluate the integral: \(\int \sec^3 \theta d \theta\) Hint: Write \(\sec^3 \theta = \sec \theta (1 + \tan^2 \theta)\) and integrate \(\sec \theta \tan^2 \theta\) by parts.
30 Integration · Level 4
Evaluate the integral: \(\int \dfrac{\sqrt{9 - x^2}}{x^2} d x\)
31 Integration · Level 4
Evaluate the integral: \(\int \dfrac{d x}{x \sqrt{1 - x^2}}\)
32 Integration · Level 4
Evaluate the integral: \(\int \dfrac{d x}{x \sqrt{a^2 + x^2}}\)
33 Integration · Level 4
Evaluate the integral: \(\int \sqrt{4 + x^2} d x\) Hint: See Problem 12 on page 3 (integral of \(\sec^3 \theta\)).
34 Integration · Level 3
Evaluate the integral: \(\int \dfrac{d x}{a^2 - x^2}\) Note: It might be easier to do this by partial fractions.
35 Integration · Level 4
Evaluate the integral: \(\int \dfrac{\sqrt{x^2 - a^2}}{x} d x\)
36 Integration · Level 5
Evaluate the integral: \(\int \dfrac{d x}{(a^2 + x^2)^2}\)
37 Integration · Level 4
Evaluate the integral using the substitution \(x = \sin \theta\): \(\int \sin^{-1} x d x\)
38 Integration · Level 5
Evaluate the integral: \(\int (\sin^{-1} x)^2 d x\)
39 Integration · Level 4
Evaluate the integral: \(\int \tan^{-1} x d x\)
40 Integration · Level 3
Evaluate the integral: \(\int \dfrac{5x - 3}{x^2 - 2x - 3} d x\)
41 Integration · Level 3
Evaluate the integral: \(\int \dfrac{6x + 7}{(x + 2)^2} d x\)
42 Integration · Level 4
Evaluate the integral: \(\int \dfrac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3} d x\)
43 Integration · Level 4
Evaluate the integral: \(\int \dfrac{d x}{x(x^2 + 1)}\)
44 Integration · Level 4
Evaluate the integral: \(\int \left(\dfrac{1}{x^2 + 1} - \dfrac{1}{x^2 - 2x + 5}\right) d x\)
45 Integration · Level 5
Evaluate the integral: \(\int \dfrac{x^3 + 2x^2 + 2}{(x^2 + 1)^2} d x\)
46 Integration · Level 4
Evaluate the definite integral: \(\displaystyle\int_{0}^{\dfrac{\pi}{2}} \dfrac{3}{1 + \sin \theta} d \theta\)
47 Integration · Level 4
Evaluate the definite integral: \(\displaystyle\int_{0}^{2 \dfrac{\pi}{3}} \dfrac{3}{5 + 4 \cos \theta} d \theta\)
48 Integration · Level 5
Evaluate the definite integral: \(\displaystyle\int_{-\dfrac{\pi}{2}}^{\dfrac{\pi}{2}} \dfrac{3}{4 + 5 \cos \theta} d \theta\)
49 Integration · Level 5
Evaluate the definite integral: \(\displaystyle\int_{0}^{\dfrac{\pi}{2}} \dfrac{5}{3 \sin \theta + 4 \cos \theta} d \theta\)
50 Differential Equations · Level 3
Solve the initial value problem: \(\dfrac{d y}{d x} = x y\), \(y(0) = 1\)
51 Differential Equations · Level 3
Solve the initial value problem: \(y \dfrac{d y}{d x} = x^2\), \(y(0) = 1\)
52 Differential Equations · Level 3
Solve the initial value problem: \(\dfrac{d y}{d x} = -2x(y + 3)\), \(y(0) = 1\)
53 Differential Equations · Level 4
Solve the initial value problem: \(\dfrac{d y}{d x} = \dfrac{x^2 y + y}{x^2 - 1}\), \(y(0) = 2\)

답변 완료: 0 / 53